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Exact solution for single-scale Gaussian random transport
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A quadrature expression is derived for the probability density function of passive tracers advected from a
point by a one-dimensional, single-scale, Gaussian velocity field. The effect of trapping on the tracer moments
and the Lagrangian velocity variance is explicitly demonstrated.
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The transport of tracers by a random velocity field is
problem of interest in a variety of areas, including fluid tu
bulence@1,2#, wave turbulence@3#, random media@4#, and
stochastic population growth models@5#. The basic stochas
tic differential equation is of the form

dx

dt
5u~x,t !,

whereu is a random field, i.e.,u varies in space and tim
such that only its statistical~average! properties are known
Generally the field may be homogeneous in space and
tionary in time, but with finite correlation length and tim
scales. The quantities of interest are the statistical prope
of the ~non-Markovian! processx(t); in particular its density
function Q(x,t) from which the momentŝxn& may be cal-
culated. For example, the transport of passive tracers b
turbulent velocity field is described by such an equati
with x(t) denoting the position of a tracer at timet. A turbu-
lent velocity field u(x,t) is found by solving the Navier-
Stokes equations, but even the simpler case of a Gaus
random velocity field remains an open problem@1,2,6#.
Many approximation methods or closure schemes have b
proposed but for the validation of these, and also of com
tational approaches, exact solutions for special cases ar
sirable but regrettably rare@1#. This paper describes an exa
solution for the density function of tracers transported in o
spatial dimension by the separable Gaussian fieldu(x,t)
5v(x)w(t). The field varies on a single spatial scale, a
deterministically in time. This is a gross simplification of th
physical problems of interest, but given the scarcity of ex
solutions in this area we believe that this result, and
methods employed to derive it, merit attention.

We consider motion in a random field defined by

dx

dt
5v~x!w~ t !,

x~0!50, ~1!

wherev(x) is a homogeneous Gaussian random proces
mean zero, andw(t) is a deterministic function of the time
This equation describes the positionx(t) of a tracer released
at x50 at timet50, and the distribution of such tracers
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time t.0 over an ensemble of realizations defines a conc
tration ~probability density! functionQ(x,t). Our goal is the
exact quadrature expression~19! for Q in the special case o
a single-scale fieldv(x).

The Gaussian random fieldv(x) is described by its cor-
relation function

^v~x!v~x8!&5a2R~x2x8!, ~2!

where the angle brackets denote ensemble averaging an
dependence ofR uponx2x8 follows from the homogeneity
of the field. TakingR(0)51 defines the variance of the fiel
to be ^v2&5a2. An alternative description ofR is by its
Fourier transform, written as

R~j!5E
2`

`

e2 ikjE~k!dk. ~3!

The non-negative functionE(k) is called the energy spec
trum of the field, in analogy with transport problems in flu
turbulence@2#. A general homogeneous Gaussian rand
process of mean zerov(x) may be approximated in eac
realization by

vN~x!5
1

AN
(
n51

N

An cos~knx!1Bn sin~knx!, ~4!

where An and Bn are chosen from independent zero-me
Gaussian distributions of variancea2, and thekn are chosen
from a distribution shaped so as to yield the desired ene
spectrum@4#. The Gaussian nature of the field results fro
passing to theN→` limit. In a single-scale field, the energ
spectrum has the special form

E~k!5
1

2
d~k2k0!1

1

2
d~k1k0! ~5!

for some characteristic wave numberk0. This implies that
the correlation functionR is given by Eq.~3! as

R~x2x8!5cos@k0~x2x8!#. ~6!

Moreover, the spectrum~5! is obtained from the expans
ion ~4! of the random field if eachkn is chosen to bek0 or
2k0 with equal probability. The result is that Eq.~4! may be
rewritten as
©2002 The American Physical Society03-1
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vN~x!5cos~k0x!F 1

AN
(
n51

N

AnG1sin~k0x!F 1

AN
(
n51

N

BnG .

~7!

But the sum ofN independent, identically distributed Gaus
ian variables isAN times a similar Gaussian variable, i.e., w
may write Eq.~7! as

v~x!5A cos~k0x!1B sin~k0x!, ~8!

with A andB chosen from independent, zero-mean Gauss
distributions of variancea2. Thus we have shown that for th
special spectrum~5!, a Gaussian random field can always
simplified to Eq.~8!.

Next, we solve the equation

dx

dt
5@A cos~k0x!1B sin~k0x!#w~ t ! ~9!

with initial condition x(0)50 in each realization, and the
consider the distributionQ(x,t), which results from averag
ing over the randomA andB. Integrating Eq.~9! to the form

E
0

x dj

A cos~k0j!1B sin~k0j!
5E

0

t

w~t!dt, ~10!

yields the implicit solution

tanhF1

2
k0rT Gcosu5sinF1

2
k0xG , ~11!

where we have introduced polar coordinates for the (A,B)
plane,

A5r cosf,

B5r sinf, ~12!

with u5f2k0x/2 for convenience. The integrated time va
able is

T5E
0

t

w~t!dt.

For given values ofx, t, andk0, Eq. ~11! defines a curve in
the (A,B) plane. Each point on the curve corresponds t
pair of random numbers (A,B) whose use in Eq.~9! allows
the point x to be reached at timet, see Fig. 1. The tota
probability densityQ(x,t) is then found by calculating the
total probability of the (r ,u) values along the curve. Not
that Eq.~11! may be solved for the angleu,

u~r ;x,t !5cos21F sin~ 1
2 k0x!

tanh~ 1
2 k0rT !

G . ~13!

Also, the minimum value ofr along the curve corresponds
u50 (f5k0x/2), with corresponding minimum radius
03710
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r min5U 2

k0T
tanh21FsinS 1

2
k0xD GU. ~14!

In order to calculate the probability densityQ(x,t) we first
consider the cumulative probability thatx(t) has a value
greater thanx,

C~x,t !5
1

2pa2E E
right of curve

e2(r 2/2a2)r du dr, ~15!

with the integration region being to the right of the cur
defined by Eq.~11!, see Fig. 1. It follows that the probability
that x(t) lies betweenx andx1dx is

Q~x,t !dx5C~x,t !2C~x1dx,t !, ~16!

and so the probability density function is given by

Q~x,t !52
d

dx
C~x,t !. ~17!

The area integral givingC(x,t) may be written as

C~x,t !5E
r min

`

drE
2u(r ;x,t)

u(r ;x,t)

du
r

2pa2
e2r 2/2a2

, ~18!

with u(r ;x,t) given by Eq.~13! and r min by Eq. ~14!. The
angle integral is evaluated immediately to yield 2u(r ;x,t)
and following differentiation with respect tox we obtain our
result

FIG. 1. An example of curve~11! in the (A,B) plane. Values of
the random numbers (A,B) that lie on this curve allow the poin
x51 to be reached whenT51. Here the parameterk0 has been
taken to be 1.
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Q~x,t !5
k0

2pa2
cosS 1

2
k0xD

3E
r min

` re2r 2/2a2

Atanh2~ 1
2 k0rT !2sin2~ 1

2 k0x!
dr.

~19!

The probability density function may now be evaluated us
numerical quadrature, and we plot in Fig. 2 its shape at v
ous times for the casew(t)[1. The parametersk0 anda are
chosen to be 1, and note the general case may alway
reduced to this by transforming to nondimensional variab

x̃5k0x,

t̃ 5ak0t.

FIG. 2. Probability density functionQ at timest50.5 ~dotted!,
t51 ~dashed!, andt510 ~solid!. Parameters arek051, a51, and
w(t)[1.
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The formula~19! also permits the analysis of several limitin
cases, some of which we now examine briefly.

The limit k0→0 of Eq. ~19! is readily shown to yield

Q~x,t !uk0505
1

pa2Ex/T

` re2r 2/2a2

Ar 2T22x2
dr, ~20!

and by changing the variable of integration toy5r 2

2x2/T2, this evaluates to

Q~x,t !uk0505
1

A2paT
e2x2/2a2T2

. ~21!

This is the expected Gaussian distribution of tracers tra
ported by the simple time-dependent velocity fieldv(x)
5Aw(t) resulting from thek0→0 limit in Eq. ~9!.

The limit of Eq. ~19! for large values ofT is straightfor-
ward, and yields the piecewise-constant distribution

Q~x!uT→`5H k0

2p
, uxu,

p

k0
,

0, otherwise.

~22!

Note that this limit corresponds to large timest→` if w(t)
is a constant or an increasing function of the time. Of p
ticular interest is the casew(t)[1 corresponding to a time
independent~‘‘frozen’’ ! velocity field, and we use this ex
ample in the figures. The zero probability of partic
transport beyondx56p/k0 can be understood by notin
that the velocity~8! must have a zero within this interva
and particles are trapped at zeros ofv(x) for all time.

The moments of the distribution are denoted by^xn&, for
example, the tracer variance is given by

^x2~ t !&5E
2`

`

x2Q~x,t !dx. ~23!

The moments can be calculated from Eq.~19! by numerical
integration~see Fig. 3!, but their values for long times can b
FIG. 3. Tracer variance and kurtosis as functions of the timet. Parameters arek051, a51, andw(t)[1.
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easily found using Eq.~22!. In particular, we note the vari
ance has theT→` value

^x2&uT→`5
p2

3k0
2

, ~24!

and the kurtosis or flatness is given by

^x4&

^x2&2U
T→`

5
9

5
~25!

and is independent ofk0.
The intensity of the velocity experienced by each trace

it moves according to Eq.~1! is a random function of the
time, and is referred to as the Lagrangian velocityu(t). We
now show that the variance of the Lagrangian velocity i
decreasing function of the time. Note that this implies,
particular, that the Lagrangian velocity correlation is nons
tionary. We begin by noting that the velocity of the trac
which is at positionx at timet, is given by Eqs.~9! and~12!,

u5r cos~f2k0x!w~ t !, ~26!

and the positionx is related tor andf through Eq.~11!,

x5
2

k0
sin21F tanh~k0rT/2!cosf

A11tanh2~k0rT/2!22 tanh~k0rT/2!sinf
G .

~27!

Substituting Eq.~27! into Eq. ~26! gives the Lagrangian ve
locity at time t,

u~ t !5
r cosf sech2~k0rT/2!w~ t !

11tanh2~k0rT/2!22 tanh~k0rT/2!sinf
. ~28!

The variance is found by averagingu2 over the ensemble o
possible values ofr andf, i.e.,

^u2&5E
0

`

dr
re2r 2/2a2

2pa2 E
0

2p

df u~ t !2, ~29!
,
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with u(t) given by Eq.~28!. The angle integral may be ca
culated exactly to give the quadrature formula

^u2&5
w2~ t !

2a2 E0

`

dr r 3sech2~k0rT/2!e2r 2/2a2
. ~30!

This decays to zero asT→` due to the inevitable trapping o
tracers at zeroes ofv(x); in Fig. 4 we plot the results of
numerical integration of Eq.~30! with k05a51 and
w(t)[1.

In summary, we have derived an exact quadrature exp
sion ~19! for the probability density function of tracers ad
vected by the single-scale velocity field~9!, and the corre-
sponding Lagrangian velocity variance~30!. Long-time
limits for transport in time-independent fields are given
Eqs.~22!, ~24!, and~25!.

Support from the Institute of Nonlinear Science, Unive
sity College Cork and helpful discussions with Dr. Supra
Roy are gratefully acknowledged.

FIG. 4. Lagrangian noise variance^u2& as a function of the time
t. Parameters arek051, a51, andw(t)[1.
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