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Exact solution for single-scale Gaussian random transport
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A quadrature expression is derived for the probability density function of passive tracers advected from a
point by a one-dimensional, single-scale, Gaussian velocity field. The effect of trapping on the tracer moments
and the Lagrangian velocity variance is explicitly demonstrated.
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The transport of tracers by a random velocity field is atime t>0 over an ensemble of realizations defines a concen-
problem of interest in a variety of areas, including fluid tur- tration (probability density function ® (x,t). Our goal is the
bulence[1,2], wave turbulencd3], random medid4], and  exact quadrature expressi@d) for ® in the special case of
stochastic population growth modgls]. The basic stochas- a single-scale field (x).
tic differential equation is of the form The Gaussian random field(x) is described by its cor-

relation function

X
gp U, (v(X)v(x"))=a®R(x—x"), @

whereu is a random field, i.e.u varies in space and time where the angle brackets denote ensemble averaging and the
such that only its statisticdbverage properties are known. dependence dR uponx—x’ follows from the homogeneity
Generally the field may be homogeneous in space and staf the field. TakingR(0)=1 defines the variance of the field
tionary in time, but with finite correlation length and time to be (v?)=«a?. An alternative description oR is by its
scales. The quantities of interest are the statistical propertidsourier transform, written as

of the (non-Markovian process(t); in particular its density

function ®(x,t) from which the momentgx") may be cal- ©

culated. For example, the transport of ia;sive tracers by a R(§)= fﬁwe KEE(K)dk. 3
turbulent velocity field is described by such an equation,

with x(t) denoting the position of a tracer at A turbu-  The non-negative functiok(k) is called the energy spec-
lent velocity field u(x,t) is found by solving the Navier- ym of the field, in analogy with transport problems in fluid
Stokes equations, but even the simpler case of a GaUSS'%‘rbulence[Z]. A general homogeneous Gaussian random

random velocity field remains an open proble2,6.  process of mean zero(x) may be approximated in each
Many approximation methods or closure schemes have begggjization by

proposed but for the validation of these, and also of compu-

tational approaches, exact solutions for special cases are de- 1 N

S|rab_le but regrettably ralfé.].'ThIS paper describes an gxact on(X)=—= 2 A, cogk,x)+ B, sin(k,x), (4)
solution for the density function of tracers transported in one N n=1

spatial dimension by the separable Gaussian figld,t)

=p(x)w(t). The field varies on a single spatial scale, andwhere A, and B,, are chosen from independent zero-mean
deterministically in time. This is a gross simplification of the Gaussian distributions of variane€, and thek, are chosen
physical problems of interest, but given the scarcity of exacfrom a distribution shaped so as to yield the desired energy
solutions in this area we believe that this result, and thespectrum[4]. The Gaussian nature of the field results from

methods employed to derive it, merit attention. passing to thé&N—< limit. In a single-scale field, the energy
We consider motion in a random field defined by spectrum has the special form
dx_ k ! k—k ! k+k
gr=v oW, E(k)= 5 8(k—ko)+ 5 8(k+ko) ®)
x(0)=0, (1) for some characteristic wave numblef. This implies that

the correlation functiorR is given by Eq.(3) as

wherev (x) is a homogeneous Gaussian random process of

mean zero, anw(t) is a deterministic function of the time. R(x—x")=cog ko(x—x")]. (6)

This equation describes the positie(t) of a tracer released

at x=0 at timet=0, and the distribution of such tracers at Moreover, the spectrun5) is obtained from the expans-
ion (4) of the random field if eack, is chosen to b, or
—kq with equal probability. The result is that E@) may be
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1 N
vN<x>=cos<kox)[J—N > A,

n=1

+sin(kgx)

()

But the sum ofN independent, identically distributed Gauss-
ian variables is/N times a similar Gaussian variable, i.e., we 1} .
may write Eq.(7) as

1 N
—>B
N nZl "

v(X)=A cogkox)+ B sin(kgx), (8)
4f _
with A andB chosen from independent, zero-mean Gaussiar
distributions of variance?. Thus we have shown that for the -
special spectrun(b), a Gaussian random field can always be
simplified to Eq.(8). -3 ]
Next, we solve the equation

)
T
1

» . . . ) . .
0 1 2 3 4
A

dx )
dat [A cogtkox) + B sin(kox) Jw(t) ©) FIG. 1. An example of curvéll) in the (A,B) plane. Values of

the random numbersA(B) that lie on this curve allow the point
with initial condition x(0)=0 in each realization, and then x=1 to be reached whefi=1. Here the parametd(, has been
consider the distributio® (x,t), which results from averag- taken to be 1.
ing over the random andB. Integrating Eq(9) to the form

2
i i = t rmin:‘ﬁtanhl
foAcos(kogHBsin(kog) _JOW(T)O'T, (10 0

(1
sm( Ekox) . (14

In order to calculate the probability densi®/(x,t) we first
consider the cumulative probability tha(t) has a value

yields the implicit solution

1 1 greater tharx,
tan}{zkorT cosf=sin Ekox , (12)
1
where we have introduced polar coordinates for tAeB) C(x,t)= 2] f e 2 dgdr, (15
2T right of curve

plane,

A=r cos¢, with the integration region being to the right of the curve

_ defined by Eq(11), see Fig. 1. It follows that the probability

B=rsing, (120 thatx(t) lies betweenx andx+dx is
with 8= ¢— kx/2 for convenience. The integrated time vari-
able is O(x,t)dx=C(x,t)— C(x+dx,t), (16)

T= th( ndr. and so the probability density function is given by
0
For given values ok, t, andkg, Eq. (11) defines a curve in O(x,t)=— dic(x’t)' (17)
X

the (A,B) plane. Each point on the curve corresponds to a

pair of random numbersA(;B) whose use in Eq9) allows

the pOintX to be reached at tImE, see F|g 1. The total The area integral givin@(x]t) may be written as

probability density®(x,t) is then found by calculating the

total probability of the €, ) values along the curve. Note

that Eq.(11) may be solved for the angle, Clxt)= fx drje(r;x,t) do r o2l (18
' I min —6(r;x,t) 2o’ '

sin(3 kox)

o(r;x,t)=cos | —————
tanh(5 kor T)

with 6(r;x,t) given by Eq.(13) andr ., by Eq. (14). The
angle integral is evaluated immediately to yield(2;x,t)

Also, the minimum value of along the curve corresponds to and following differentiation with respect towe obtain our
0=0 (¢p=Kkox/2), with corresponding minimum radius result
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09 ' ; ' ' ; ' ' The formula(19) also permits the analysis of several limiting
ol | cases, some of which we now examine briefly.
' P The limit k,—0 of Eq. (19) is readily shown to yield
* t=05
I P ] 1 (= re-rize?
L P | O(X, )|k —o= dr, 20
0.6 ( )|k0 0 7Ta/2 X/T\m ( )
io‘s_ N 1 and by changing the variable of integration o=r?
oaf AN 1 —X?IT?, this evaluates to
o3r ,’I:": .:-_‘\ =1 | O(x t)| _ ef><2/20¢2T2 (21)
02 / ‘\\ =10 T e V2maT .
’ 5 B \\ . . . . . .
01l '/ EEN . This is the expected Gaussian distribution of tracers trans-
R . ported by the simple time-dependent velocity fiel¢x)
L S o T S +  =Aw(t) resulting from thek,—0 limit in Eq. (9).

The limit of Eq. (19) for large values ofT is straightfor-

FIG. 2. Probability density functio® at timest=0.5 (dotted, ~~ Ward, and yields the piecewise-constant distribution
t=1 (dashed, andt=10 (solid). Parameters are,=1, a=1, and

= a
w(t)=1. _0, |X|<— ,
O(X)|7r =1 27 Ko (22
Ko 1 0, otherwise.
O(x,t)= ,C0 Ekox
2ma Note that this limit corresponds to large times o if w(t)
12202 is a constant or an increasing function of the time. Of par-
% * re dr ticular interest is the casg(t)=1 corresponding to a time-
. : ' independent“frozen”) velocity field, and we use this ex-
rmm\/tamr?(% Kor T) — sir?(3 Kox) In :

ample in the figures. The zero probability of particle
(190  transport beyondk= * 7/k, can be understood by noting

» ) . _that the velocity(8) must have a zero within this interval,
The probability density function may now be evaluated usingyng particles are trapped at zerosugk) for all time.

numerical quadrature, and we plot in Fig. 2 its shape at vari- The moments of the distribution are denoted(lf), for

ous times for the casg(t)=1. The parametels, and« are example, the tracer variance is given by
chosen to be 1, and note the general case may always be

reduced to this by transforming to nondimensional variables, ) e,
(x5(t))= X“O(x,t)dx. (23
’)2: koX, o
5 The moments can be calculated from ELQ) by numerical
t = akgt. integration(see Fig. 3, but their values for long times can be
35 T T T T T 3.2 T T T T T
3r 4
25F A
2r 4
151 b 2
il i
051 b
o0 1 2‘ 3 4‘1 é 6 ‘7 8 E") 10 é 9‘ 10

FIG. 3. Tracer variance and kurtosis as functions of the tinlarameters afe,=1, =1, andw(t)=1.
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easily found using Eq(22). In particular, we note the vari-

ance has th& —o value ook _

) 2 o8| 1

w=—, 24
<X >|T—‘ 3kg ( ) ol i
and the kurtosis or flatness is given by oer |

l\QO.S-

(x* 9 (25

== 04| g
2\2
(2, °

03 b

and is independent d,.

The intensity of the velocity experienced by each tracer as
it moves according to Eq.l) is a random function of the o1 ]
time, and is referred to as the Lagrangian velocify). We .
now show that the variance of the Lagrangian velocity isa ° ! SR A
decreasing function of the time. Note that this implies, in
particular, that the Lagrangian velocity correlation is nonsta- FIG. 4. Lagrangian noise varian¢e®) as a function of the time
tionary. We begin by noting that the velocity of the tracer,t- Parameters ang=1, a=1, andw(t)=1.
which is at positiorx at timet, is given by Eqs(9) and(12),

0.2 b

with u(t) given by Eq.(28). The angle integral may be cal-
u=r cog ¢—Kkox)w(t), (26) culated exactly to give the quadrature formula

and the positiorx is related tor and ¢ through Eq.(11), W

2 t ©
. (2) fo drr3secR(korT/2)e "22° (30)
o

(u?)=
2 tanh(korT/2)cosg¢
X:_

sin .

k — i

° Vi+tantt(korT/2)— 2 tanttkor T/2)sin g This decays to zero &— o0 due to the inevitable trapping of
(27 tracers at zeroes af(x); in Fig. 4 we plot the results of

Substituting Eq(27) into Eq. (26) gives the Lagrangian ve- numerical integration of Eq.(30) with ko=a=1 and

locity at timet, w(t)=1. _
In summary, we have derived an exact quadrature expres-
r cos¢ secR(kor T/2)w(t) sion (19) for the probability density function of tracers ad-
u(t) vected by the single-scale velocity fie{dl), and the corre-

1+tanif(korT/2) - 2 tanhikor T/2)sin sponding Lagrangian velocity variancé80). Long-time

limits for transport in time-independent fields are given by

The variance is found by averaging over the ensemble of Eqgs.(22), (24), and(25).

possible values of and ¢, i.e.,
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